Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Res ; 29(1): 223, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581072

RESUMO

BACKGROUND: COVID-19 pneumonia causes hyperinflammatory response that culminates in acute respiratory syndrome (ARDS) related to increased multiorgan dysfunction and mortality risk. Antiviral-neutralizing immunoglobulins production reflect the host humoral status and illness severity, and thus, immunoglobulin (Ig) circulating levels could be evidence of COVID-19 prognosis. METHODS: The relationship among circulating immunoglobulins (IgA, IgG, IgM) and COVID-19 pneumonia was evaluated using clinical information and blood samples in a COVID-19 cohort composed by 320 individuals recruited during the acute phase and followed up to 4 to 8 weeks (n = 252) from the Spanish first to fourth waves. RESULTS: COVID-19 pneumonia development depended on baseline Ig concentrations. Circulating IgA levels together with clinical features at acute phase was highly associated with COVID-19 pneumonia development. IgM was positively correlated with obesity (ρb = 0.156, P = 0.020), dyslipemia (ρb = 0.140, P = 0.029), COPD (ρb = 0.133, P = 0.037), cancer (ρb = 0.173, P = 0.007) and hypertension (ρb = 0.148, P = 0.020). Ig concentrations at recovery phase were related to COVID-19 treatments. CONCLUSIONS: Our results provide valuable information on the dynamics of immunoglobulins upon SARS-CoV-2 infection or other similar viruses.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Imunoglobulina G , Imunoglobulina M , Anticorpos Antivirais , Imunoglobulina A
2.
Front Immunol ; 14: 1228795, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649488

RESUMO

Antiretroviral therapy (ART) induces persistent suppression of HIV-1 replication and gradual recovery of T-cell counts, and consequently, morbidity and mortality from HIV-related illnesses have been significantly reduced. However, in approximately 30% of people living with HIV (PLHIV) on ART, CD4+ T-cell counts fail to normalize despite ART and complete suppression of HIV viral load, resulting in severe immune dysfunction, which may represent an increased risk of clinical progression to AIDS and non-AIDS events as well as increased mortality. These patients are referred to as "immune inadequate responders", "immunodiscordant responders" or "immune nonresponders (INR)". The molecular mechanisms underlying poor CD4+ T-cell recovery are still unclear. In this sense, the use of omics sciences has shed light on possible factors involved in the activity and metabolic dysregulation of immune cells during the failure of CD4+ T-cell recovery in INR. Moreover, identification of key molecules by omics approaches allows for the proposal of potential biomarkers or therapeutic targets to improve CD4+ T-cell recovery and the quality of life of these patients. Hence, this review aimed to summarize the information obtained through different omics concerning the molecular factors and pathways associated with the INR phenotype to better understand the complexity of this immunological status in HIV infection.


Assuntos
Infecções por HIV , Soropositividade para HIV , Humanos , Infecções por HIV/tratamento farmacológico , Multiômica , Qualidade de Vida , Teste de HIV
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...